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ABSTRACT
In this study, we proposed an empirical multi-material cali-
bration pipeline for learning-based material decomposition.
We used realistic short scan CT data from a general metric
phantom using a Siemens C-arm system, and built the cor-
responding numeric phantom data in a software framework.
After that we applied registration approaches for matching
the simulated data to the acquired data, which generates prior
knowledge for the following material decomposition pro-
cess, as well as the ground truth for quantitative evaluations.
According to the preliminary decomposition results, we suc-
cessfully decomposed the inserted phantom plugs of different
materials using learning-based material decomposition pro-
cess, which indicates that the proposed approach is valid for
learning-based material decomposition.

1. INTRODUCTION

Spectral computed tomography (CT) started around 1975 as
an improvement in CT technology, which enables to gain in-
formation on the energy-dependent attenuation properties of
the object [1]. This makes it possible to differentiate differ-
ent base materials in X-ray imaging, as long as the number
of detector bins is equal or greater than the number of ba-
sis materials. The first algorithm is called the “basis mate-
rial decomposition” (BMD) method [2], and was proposed in
1976. The BMD method has been applied to many clinical
and scientific applications for material decomposition. Since
most material decomposition methods are extended from the
BMD method, spectral weighting or spectrum calibration are
essential for these methods [3][4][5]. However, it is diffi-
cult to measure polychromatic spectral information in real-
istic scans, which limits the accuracy of material decompo-
sition. To avoid these difficulties, empirical calibration tech-
niques that use measurements of known materials with known
positioning are employed to analytically derive the correla-
tions of the materials and the path length [6]. In order to bring

those approaches closer to clinical applications, we applied
an empirical multi-material calibration for a learning-based
material decomposition process. We performed several ex-
periments to investigate the feasibility of the calibration. The
results are evaluated using linear correlation (r) and the struc-
tural similarity index (SSIM) [7] as quantitative metrics.

2. METHODS

In this study, we used short scan CT data from CRIS’s Elec-
tron Density Phantom Model 062 (CIRS, Norfolk, Virginia,
USA) using a Siemens C-arm CT system. Additionally we
built the corresponding numeric phantom data in a software
framework. After that we applied registration approaches
for matching the simulated data to the acquired data, which
generates not only prior knowledge but also ground truth for
the following material decomposition process, as well as the
ground truth for quantitative evaluations. All methods are
implemented in Java-based framework CONRAD [8].

2.1. Data Generation

The CRIS’s Electron Density Phantom Model 062 (ED phan-
tom) is specifically designed for Cone Beam CT Imaging sys-
tems, which enables precise correlation of CT data to elec-
tron density of various tissues. It consists of two nested disks
made from material of water equivalent plastic. They can rep-
resent both head and abdomen configurations. We only used
the inner disk in this study, in which 9 different tissue equiva-
lent electron density inserted phantom plugs can be positioned
within the scan field. Optional distance marker plugs enable
quick assessment of the CT scanner’s distance measurement
accuracy. The configuration of the ED phantom is presented
in Figure 1.

For the real data, we performed scans of the ED phan-
tom at three different tube voltage settings of 50kV, 90kV
and 125kV. During these scans, the maximal axial collima-
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Fig. 1. The CRIS’s Electron Density Phantom Model 062 and
the corresponding analytic description.

tion was used to reduce scatter artifacts. The resolution of
the flat panel detector is 2480x1920 pixels with a pixel size
of 0.154x0.154 mm, however in this study the detector was
operated with 2x2 binning that allows an effective resolution
of 1240x1920 pixels with a pixel size of 0.308x0.308 mm.
The source-to-isocenter distance is 600 mm while the source-
to-detector distance is 1200 mm. Rotation of 197.53 degrees
short scans with an average angular increment of 0.76 per pro-
jection were performed, which generated 248 projections for
each scan.

The numeric ED phantom data generation relies on the
simulation of X-ray images [9]. We used the analytic descrip-
tion of the ED phantom, as well as the same scanning setups
of the realistic CT scan, to build the corresponding numeric
phantom data. For the X-ray spectrum setup, we applied the
effective monochromatic X-ray energy dependent absorption
model to the data. Energy-dependent X-ray absorption coeffi-
cients for elemental data and compounds were obtained from
the NIST database [10].

2.2. Data Calibration

The C-arm scanner generates absorption images, therefore
we extracted line integrals using a Siemens software with the
machine-dependent pre-processing. Then reconstruction was
performed to yield 3-dimensional (3D) volume data of the
ED phantom, additionally we applied a circular mask to limit
the regeion-of-interest for the subsequent registration. On the
other side, we built the numeric ED phantom data in 3D us-
ing the volumetric phantom renderer in CONRAD, as well as
the individual materials data. Then we applied 3D-3D rigid
registration [11] between the actual data and simulated ED
phantom data to obtain the registration transform. For the
rigid registration, the fixed image is the acquired data and the
moving image the numeric ED phantom data.

Since the simulated ED phantom data and the individual
materials in the ED phantom data have the same geometry,
we registered the individual ED phantom data to the acquired
data using the registration transform that comes from the 3D-
3D registration. Finally we performed forward projection to
the individual materials in the ED phantom data to yield the

Fig. 2. The calibration procedure flow chart

Fig. 3. Two examples of the acquired ED Phantom data (left)
and the simulated multiple materials ED phantom data(right)
at the tube voltage of 90kV.

individual materials projection data for material decomposi-
tion [12] in projection domain, as well as the ground truth for
the quantitative evaluation of linear correlation and the SSIM
index. The calibration procedure flow chart is illustrated in
Figure 2.

2.3. Learning-based Material Decomposition

Firstly, we extracted 5 consecutive frames as a subset of the
acquired data, and used the first frame from the acquired
data and the simulated phantom data respectively for clas-
sifier training, then we employed learning-based material
decomposition approaches to predict the following frames
(the second frame to the fifth frame). We performed the
machine learning approaches of Bootstrap Aggregating (Bag-
ging) using REPTrees for the material decomposition. We
built feature extractors to extract the spectral information
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(namely “Channel”) [3] and polynomial combinations [4]
of the spectral information (namely “Polynomial”), and the
Trainable Weka segmentation (namely “WEKA”) [13] that
extracted structural information from the individual material
ED phantom data, from both label images and training images
for building the classifier by the machine learning approach
of Bootstrap Aggregating (Bagging) with the WEKA imple-
mentation [14]. Additionally, following the above strategy,
we applied the learning-based material decomposition pro-
cess to all acquired projection images. We chose one frame
of every 5 frames of the datasets as label data, which means
there is an interval of 4 frames between two label frames.
These label frames were used for supervised machine learn-
ing to build the classifiers, then we used the classifiers to
predict the rest of the frames for the material decomposition
process. Therefore, for the 248-frame dataset, we learned
from 49 frames and predicted 199 frames. More details
of the learning-based material decomposition method were
elaborated in [12].

3. RESULTS

Figure 3 shows examples of the acquired ED phantom data,
the simulated multi-material ED phantom data in 3D volume
at a tube voltage of 80 kV. Since we knew the analytic de-
scription of the ED phantom, we could easily see the mis-
alignment. Figure 4 illustrates the 3D-3D registration proce-
dure. After the registration, the misalignment is eliminated.
Now the individual material phantom data in projection do-
main could be used as the label images for the learning-based
material decomposition process, as well as the ground truth
for the quantitative evaluation. Figure 5 and Figure 6 show the
material decomposition results of titanium rod, dense bone
and water, and the respective reconstructions of the material
decomposition results, along with the quantitative results.

Fig. 4. The 3D-3D registration procedure

Fig. 5. The material decomposition results of titanium rod,
dense bone and water, as well as the quantitative evaluation
results.

Fig. 6. Central slice of the material decomposition recon-
struction, and the quantitative evaluation results.

4. DISCUSSION AND CONCLUSION

In this study, we proved the concept of calibrating multi-
material phantom using a registration method. We built the
corresponding numeric phantom data using the analytic de-
scription of the phantom and the actual scanning setup infor-
mation. This yielded the registered individual multi-material
phantom data for the learning-based material decomposition
process, as well as the ground truth for the quantitative eval-
uation. We presented the results of the third frame to demon-
strate the feasibility of the proposed approach. As shown in
Figure 5, the utilization of energy-selective channels and their
polynomial combination as features provide good results in
distinguishing individual materials from the actual CT data,
which is in line with our expectation. Furthermore, the de-
composition results of using structural information (WEKA
column in Figure 5 and Figure 6) are very good, which can be
comparable or even better than results using other features.
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Especially in the water reconstructed results (Figure 6), the
“Channel” and the “Polynomial” results failed to distinguish
the boundaries between water and the inserts that have simi-
lar attenuation coefficients compared to water. However, the
“WEKA” result could differentiate the boundaries by bene-
fiting from the shape information from the WEKA trainable
segmentation features, which indicates the potential of inte-
grating structural information into material decomposition.
According to the preliminary decomposition results, we suc-
cessfully decomposed the plugs of different materials using
learning-based material decomposition process, which indi-
cates that the empirical multiple materials calibration is valid
for learning-based material decomposition.
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